Topic 5 Biology **Booklet 4 of 4** ## Revision Questions Evolution, Speciation & Determining the Time of Death MARK SCHEME | Question
Number | Answer | Mark | |--------------------|---|------------| | 6(a) | idea that individuals of a species can {interbreed / eq}; | | | | 2. to produce fertile {offspring / eq}; | | | | the {hybrids / offspring} can flower and produce viable seeds / eq; | max
(3) | | Question
Number | Answer | Mark | |--------------------|-------------------------------|------| | 6(b)(i) | 1. {variety / eq} of alleles; | | | | 2. in a gene pool / eq; | (2) | | Question
Number | Answer | Mark | |--------------------|---|------------| | 6(b)(ii) | different alleles in each of the two {populations / eq}; | | | | each {population / species} is adapted to live
{in different environmental conditions / at
different altitudes / eq}; | | | | there will have been different mutations in each population; | | | | reference to alleles from different {species
/eq } will mix / hybrids receive alleles from
both { species / eq}; | max
(2) | | Question
Number | Answer | Mark | |--------------------|--|------| | *6(c) QWC | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | | | | reference to original population increasing in
size and spreading into a wider diversity of
{habitats / eq}; | | | | 2. reference to mutations ; | | | | 3. leading to diversity in flowering times / eq; | | | | 4. (and) other plant features / eq; | | | | 5. reference to reproductive isolation; | | | | 6. restriction in gene flow / eq; | | | | 7. between extremes of population / eq; | | | | 8. reference to different environmental factors in each region ; | | | | each region has different selection pressures
/ eq; | | | | 10. idea of plants adapted to a region ; | | | | 11. reference to survival and breeding; | | | | 12. reference to change in allele frequencies (over time); | | | | 13. (leads to) differences between gene pools / eq; | (6) | | Question
Number | Answer | Mark | |--------------------|--|------| | 7(a)(i) | (the total of) all the alleles in a {population / eq}; | | | | | (1) | | Question
Number | Answer | Mark | |--------------------|---|------| | 7(a)(ii) | the {proportion of / number of times occurring / eq} for one allele within a {gene pool / | | | | population / eq); | (1) | | Question
Number | Answer | Mark | |--------------------|--|------| | 7(b)(i) | if allowed to interbreed / eq; | | | | sub-species could (probably) produce fertile offspring / eq; | (2) | | Question
Number | Answer | Mark | |--------------------|--|--| | 7(b)(ii) | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | | | | reference to a few (ancestral) boar reaching the island; | | | | reference to (two populations) {geographical separation / separated by the sea / volcanic eruptions / eq}; | | | | 3. populations {cannot interbreed / eq}; | | | | idea of gene flow between populations
{prevented / restricted}; | | | | only a small number (on island) of other
boar for breeding / reference to founder
effect / eq; | To you have been seen as a | | | 6. reference to {restricted / limited / eq} variety of alleles / eq; | | | | 7. reference to mutations; | | | | 8. different {environmental conditions / selection pressures / eq} on island different from mainland; | | | | 9. reference to changes in allele frequencies ; | | | | 10. (leads to) {phenotypic / physiological / physical / behavioural} changes ; | | | | 11. reference to possibility of (allopatric) speciation; | max
(5) | | Question
Number | Answer | Mark | |--------------------|--|------------| | 7(b)(iii) | reference to {bands / eq} produced; | | | | 2. reference to {bands / eq} at certain {positions / eq} ; | | | | common {bands / eq} contain similar {DNA fragments / eq}; | | | | idea that the more similar the patterns the {closer the relationship / more likely to have {recent / eq} common ancestor}; | | | | 5. idea that very few differences if still a sub-species ; | max
(3) | | Question | Answer | Mark | |----------|--|--| | Number | la caracteria de la final de la final de la francia de la caracteria de la caracteria de la caracteria de la c | I see the see that a problem is a second and in the second area. | | 1(a)(i) | | | | | C; | (1) | | | | | | Question | Answer | Mark | |----------|--------|------| | 1(a)(ii) | | | | | A; | (1) | | | | | | Question
Number | | Mark | |--------------------|-----|------| | 1(a)(iii) | D ; | (1) | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(b)(i) | 1. reference to graph; | | | | 2. line (graph) / eq; | | | | {Y / vertical} and {X / horizontal} axes correctly
described. e.g. mass versus time / rate versus
temperature; | | | | idea of using same scale for axes (for both plants) ; | | | | idea of plotting each {temperature / species
(plant)} separately; | (3) | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(b)(ii) | 1. idea of controlling a variable ; | | | | reference to {optimum / suitable / eq}
temperature (for germination); | | | | idea of using {viable / live / eq} seedlings OR
making sure that seeds {germinate / eq}; | | | | 4. reference to validity of the investigation; | (2) | | Question
Number | Answer | Mark | |--------------------|---|------| | 1(b)(iii) | 1. sea plantain / Plantago maritima / Plantago ; | | | | Any three from: | | | | idea of different latitudes have different
(mean) temperatures; | | | | {sea plantain / Plantago maritima / Plantago}
grows {better / eq} at all (three)
temperatures / eq; | | | | {bog sedge / Kobresia simpliciuscula/
Kobresia} does not grow very well at {lower
temperatures / 10°C and 14°C} / eq; | | | | credit appropriate comparative manipulated figures; | (4) | | Question | Answer | Mark | |----------|--------|------| | Number | | | | 4(a) | A; | (1) | | | | | | Question
Number | Answer | Mark | |--------------------|---|------| | *4(b)
QWC | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | | | | idea of geographical isolation e.g. physical barrier
between Corsican and mainland birds / allopatric
speciation; | | | | idea that there are different selection pressures
(between Corsica and the mainland); | | | | an example of selection pressure e.g. food source,
different habitats; | | | | 4. idea that <i>mutations</i> occurred ; | | | | 5. Idea that this results in adaptation to the conditions | | | | 6. these {alleles /genes} passed on (to offspring); | | | | 7. idea of change in <i>gene pool</i> e.g. increasing <i>frequency</i> of (these) <i>alleles</i> , changes in <i>gene pool</i> ; | | | | reference to reproductive isolation (of Corsican nuthatches from mainland nuthatches); | | | | idea that birds on mainland could live in all regions
as there is no restriction on gene flow; | (5) | | | | | | Question
Number | Answer | Mark | |--------------------|---|------| | 4(c)(i) | ACCEPT the converse in the context of S. europaea, if clearly expressed | | | | reference to S. whiteheadi adapted to {colder /
mountainous} regions; | | | | (if climate warms) {food supply / pine seeds / invertebrates} less available; | | | | idea of {small population / only 2500 pairs} (of S whiteheadi); | | | | idea of limited {gene pool / genetic diversity /
variety of alleles}; | | | | idea that all the S. whiteheadi will be adversely affected; | | | | 6. idea that the S. whiteheadi cannot fly to other regions; | | | | | (3) | | Question
Number | Answer | Mark | |--------------------|--|------| | 4(c)(ii) | idea that S. whiteheadi have a variety of food
sources e.g. can change their feeding habits, eat
seeds and invertebrates}; | | | | idea that {more / different} {invertebrates /seeds /
food / eq} might become available; | | | | idea that they have another allele that gives a survival advantage; | | | | idea that they could migrate (NOT south, somewhere warmer); | (2) | | Question
Number | Answer | Mark | |--------------------|---|------| | 4(d) | idea of captive-breeding programmes; | | | | reference to {conserve / preserve / eq} {alleles
/genes / gene pools}; | | | | reference to {re-introduction / releasing of S.
whiteheadi into suitable habitats}; | | | | | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | 7(a) | idea of less {stress / trauma /
discomfort / depressed /eq} (for
the animals); | Accept converse argument throughout | | | | idea that animals are more likely to breed in natural environment; | | | | | 3. idea that animals may require large areas ; | | | | | 4. idea that problems of releasing animals back into the wild is avoided eg habituation; | | | | | idea that {disease is less likely /
disease will not wipe out
population}; | | | | | idea of allowing (natural) {interspecific relationships / communities} to exist; | 6. Accept reference to maintaining their niche | | | | idea of allowing (natural) {intraspecific relationships / family / social / eq} {structure/ behaviour}; | | | | | 8. (because) large numbers of animals needed / wider gene pool / eq; | | | | | 9. idea that (natural) {diet / food / eq} available; | | (3) | | | 1 4 | | | |--------------------|--|---|------| | Question
Number | Answer | Additional guidance | Mark | | 7*(b) | (QWC- Spelling of technical terms (in italics) must be correct) 1. reference to succession; 2. reference to (forensic) entomology | Penalise spelling once 1. Accept in context of either insects or decomposition | | | | 3. example of {insect / eq} e.g. fly, beetle, wasp; | 3. Named insect must be spelt correctly | | | | idea that the {types / species / life cycle stages} (of insects) are used; | | | | | reference to {decomposition / decay / eq}; | | | | | idea that there are different stages of {decomposition / decay / eq}; | 6. Accept if 2 or more stages listed | | | , | 7. detail of {decomposition / decay /
eq} e.g. production of gases,
liquefaction of tissue, bloating,
discolouration ; | | | | | reference to rate of {succession / insect development / decomposition} influenced by {external factor / appropriate named factor}; | 8. Named <i>factor</i> must be spelt correctly | | | | idea that insect and decomposition information is used to determine time of death; | | | | | | | (5) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | 8(a)(i) | (successful interbreeding) produces offspring; | Accept converse throughout | | | | 2. (same species produce) fertile (offspring); | Ignore viable | | | | credit reason why offspring of different species might be infertile; | eg genetic incompatibility, different
number of chromosomes, poor quality
gametes , low number of gametes | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | 8(a)(ii) | 1. reference to reproductive isolation; | | | | | 2. different breeding times; | | | | | do not recognise {courtship displays / songs / eq}; | | | | | 4. physically incompatible eg genitalia ; | | (3) | | Question
Number | Answer | Additional Guidance | Mark | | 8(b) | idea that the two species share the same habitat; | | | | | idea that the two species experience the same environmental conditions; | Accept similar | | | | 3. (therefore) the same selection pressures ; | NB this needs to be in the context of both species being subjected to the same selection pressures Accept similar | | | | idea that they are both well-adapted (to their environment); | Accept similar | | | | idea that no mutations have happened that
{improve / change} their {phenotypes /
survival}; | | | | | 6. {no / few} changes in allele frequency /
gene pool is stable; | | | | | 7, idea that there has been very little change in environment (over the years); | | (3) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|---------------------|------| | 4(a)(i) | 1. (75% of 6100 =) 4575 (squirrels); | | (1) | | Question
Number | Answer in the state of stat | Additional guidance | Mark | |--------------------|--|--|------| | 4(a)(ii) | (Total number of alleles in black squirrels = 6100 × 2 =) 12200; (4575 ÷ 12200 =) 0.375 / 0.38 / 0.4; | Correct answer only gains full marks CE to be applied from 4(a)(i) CE from mp 1 e.g.4575 ÷ 6100 = 0.75 Accept 37.5 % | (2) | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (-) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 4(b) | idea that the allele for {black fur could increase / grey fur
could decrease} if there was a disease; | Accept B will increase / b will decrease | | | | 2. because the disease would act as a selection pressure ; | | | | | idea that the black squirrels would survive and pass the
black fur alleles onto their offspring; | Accept B will be passed on converse | | | | 4. idea that black squirrels will out-compete the grey ones as they are more resistant to disease; | Converse | | | | 5. idea that if the grey squirrels are wiped out the frequency of b will {decrease in the total population / stay the same in the black population}; | | | | | 6. idea that it will not change at all if there is no disease ; | | | | | 7. idea that it will not change if the black squirrel is not immune to a particular disease that occurs; | | | | | 8. idea that it will not change if the scientists were wrong ; | | (4) | | Question
Number | Answer | Mark | |--------------------|---|------| | 1(a) | cross next to degree of muscle concentration; | | | | cross next to signs of decomposition; | (2) | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(b) | idea of SD {measures / shows} {spread /
range / eq} of data; | | | | Idea of most readings are within {± 1 x SD / ± 2 x SD} e.g. approx 60% readings within (±)1 x SD / approx 90% readings within (±) 2 x SD; | | | | idea that as length of time increases, SD increase / eq; | | | | idea of more variability (in temperature) as
time increases / eq; | | | | comment on change in reliability of time of
death with time / eq; | | | | 6. estimate (of time of death) can only be within a {4 / 5 / 6 / 7} hour period; | max | | | 7. use of manipulated data ; | (4) | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(c) | three from the following: | | | | {(body) mass/BMI / weight / eq}
{(subcutaneous) fat /eq}
surface area, | | | | {ambient / eq } temperature immersion in water age (of person at death) | | | | skin colour
thickness of hair
gender | | | | clothing blood loss humidity | | | | air movement {core / body} temperature at time of death ;;; | (3) | | Question
Number | Answer | Mark | |--------------------|--|------| | 4(a) | fibrous - long / linear / straight (chains), globular - compact / spherical / eq; | | | | 2. globular are folded and fibrous are not / eq; | | | | 3. globular are soluble and fibrous are not / eq; | | | | fibrous -involved in {structural / eq} and globular
are not; | | | | globular - involved in {catalysis / metabolism / eq}
and fibrous are not; | (2) | | Question | Answer | Mark | |----------|--------|------| | Number | | | | 4(b)(i) | | | | | C; | (1) | | | | | | Question
Number | Answer | Mark | |--------------------|----------------------------------|------| | 4(b)(ii) | Any two from: | | | | 1. physical damage / eq ; | | | | 2. immersion in water / eq; | | | | 3. (external) temperature / eq; | | | | 4. burning / eq; | | | | 5. electrocution / eq; | | | | 6. reference to {clothing / eq}; | | | | 7. wind / air movements / eq ; | (2) | | Question
Number | Answer | Mark | |--------------------|---|------| | 4(c) | reference to not {all / both / eq} muscles
{contract / relax / reach (full) rigor / eq} at
same {time / rate / eq}; | | | | idea of jaw muscle contracting before leg
muscle / eq; | | | | idea of jaw muscle reaches {full contraction /
rigor} before leg muscle / eq; | | | | jaw starts contraction {0.5 / 0.8 / 0.9} hours
before leg OR jaw reaches (full) rigor 2.5
hours before leg; | | | | reference to {full contraction / rigor} in
muscle does not last very long; | | | | idea of leg is still contracting while jaw is
relaxing / eq; | (4) | | Question | Answer | Mark | |----------|---------------------------|------| | Number | | | | 5(a) | B – forensic entomology ; | (1) | | | | | | Question
Number | Answer | Mark | |--------------------|-------------------|------| | 5(b)(i) | D – temperature ; | | | | | (1) | | Question
Number | Answer | Mark | |--------------------|---|------| | 5(b)(ii) | idea that the body has been dead for a while; | | | | (because) more than one species of insect present / eq; | | | | 3. reference to succession (of insect species); | | | | idea that life cycle {times / stages} of the insects are {known / used / eq}; | | | | idea that life cycle times depend on
(environmental) temperature; | | | | credit specific ref to information in table e.g.
blowfly cycle complete; | | | | | (3) | | Question
Number | Answer | Mark | |--------------------|--|------| | 5(c)(i) | idea that a drop in body temperature is
linked to time after death e.g. algor mortis; | | | | idea that factors affect temperature drop
e.g. environmental temperature, body size,
clothing; | | | | (useful because) time of death can be
calculated if (ambient) temperature known /
eq; | (2) | | | only useful for short period of time following
death e.g. 24 hours, a day; | | | Question
Number | Answer | Mark | |--------------------|--|------| | 5(c)(ii) | idea that body decomposes in a specific sequence (with time); | | | | idea that factors affect decomposition e.g.
environmental temperature, wounds; | | | | (not useful) if all the body has decomposed / eq; | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|------| | 6(a) | idea that the temperature of the {body / core} changes
(with time after death); | 1 ACCEPT cooling | | | | idea that (core) temperature depends upon the {ambient / eq} temperature; | | | | | 3. idea that {other post-death changes / muscle contraction / insect life cycles / decomposition / eq} depend on (ambient / body) temperature : | | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|-------------------------------------|------| | 6(b)(i) | Correct answer gains all 3 marks
1. line drawn between 25°C (core) and 15°C (ambient) ; | 1 ACCEPT within the next scale line | | | | line drawn from centre of circle through the intersect of line 1 with diagonal; | 2 CE applies | | | | 3. time of death = {23 - 24}; | 3 CE applies | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | *6(b)(ii) | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | QWC emphasis is clarity of expression | | | | Clothing 1. for the clothed body the {estimate was too short / eq }; 2. because the clothing would {reduce heat loss / body would cool more slowly / temperature would drop slower | ACCEPT converse arguments for Mps other than 1, 4 and 7 1 ACCEPT time of death was earlier / died longer ago | | | | / eq}; 3. idea that clothing would {insulate / trap the heat / eq}; | | | | | Position 4. for the body curled up the {estimate was too short / eq }; | 4 ACCEPT time of death was earlier / died longer ago | | | | 5. because {heat loss is reduced / body would cool more slowly / temperature would drop slower / eq}; | | | | | 6. as the (exposed) surface area was smaller/ eq ; | | | | | Air movement | | | | | 7. for the moving air {the estimate was too long / eq }; | 7 ACCEPT time of death was
more recent / died later
IGNORE submersion in water | | | | 8. as moving air {speeds up heat loss / body would cool faster / temperature would drop faster / eq }; | TOTAL SEEMINGSON III WATER | (6) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | 7(a) | Idea that {body / core / eq} temperature drops after death; | | | | | (rate / extent) of temperature drop depends on {ambient / eq} temperature; | 2 IGNORE body temperature drops to ambient temperature ACCEPT idea that if body temperature has already reached ambient temperature there will be no further fall | | | | 3. Idea that ambient temperature {fluctuates (over time) / does not stay constant}; | | | | | 4. idea that the sooner after death the more accurate the (estimate of) time of death ; | | | | | | | (3) | | Question
Number | Answer | Additional Guidance Mark | |--------------------|---|--| | 7(b)(i) | 1. correct values read from graph (37.5 & 36.27); | Correct answer only scores 2 marks | | | 2. (correct subtraction) = 1.23(°C); | 2 IGNORE + or - signs
ACCEPT ECF for 36.26 to
36.28
e.g. 36.28 = 1.22(°C) (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | 7(b)(ii) | Idea that calculations of time of death are based on
{average body temperature / 37° C}; | | | | | body temperature at time of death will depend on time of day / eq; | | | | | idea that therefore the calculated value for time of death may not be accurate; | 3 ACCEPT therefore the estimate will have to be a range of times ACCEPT take into account 1,23°C range | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | *7(c) | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | Emphasis is on clarity of expression | | | | 1. idea of using {a range / at least five} temperatures ; | 1 ACCEPT a min of -10°C and a | | | | description of temperature control e.g. water bath, incubator; | max of 50°C | | | | idea that timing starts when eggs hatch into first instar maggots; | ; | | | | 4. and ends when the (third Instar) maggots begin to pupate / eq; | 5 ACCEPT minimum of 3 eggs
/ maggots | | | | 5. idea that several {eggs / maggots} should be used at each temperature; | / magguts | | | | 6. idea of providing food for maggots ; | 7 IGNORE light, pH, amount of food, oxygen | | | | 7. reference to appropriate controlled variable e.g. humidity, mass of food, species ; | Toda, oxygen | | | | 8. reference to plotting data on a graph of temp against time (for first instar to become a pupa); | | (5) |